Size Scaling of Microtubule Assemblies in Early Xenopus Embryos.

نویسندگان

  • Timothy J Mitchison
  • Keisuke Ishihara
  • Phuong Nguyen
  • Martin Wühr
چکیده

The first 12 cleavage divisions in Xenopus embryos provide a natural experiment in size scaling, as cell radius decreases ∼16-fold with little change in biochemistry. Analyzing both natural cleavage and egg extract partitioned into droplets revealed that mitotic spindle size scales with cell size, with an upper limit in very large cells. We discuss spindle-size scaling in the small- and large-cell regimes with a focus on the "limiting-component" hypotheses. Zygotes and early blastomeres show a scaling mismatch between spindle and cell size. This problem is solved, we argue, by interphase asters that act to position the spindle and transport chromosomes to the center of daughter cells. These tasks are executed by the spindle in smaller cells. We end by discussing possible mechanisms that limit mitotic aster size and promote interphase aster growth to cell-spanning dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitotic spindle scaling during Xenopus development by kif2a and importin α

Early development of many animals is characterized by rapid cleavages that dramatically decrease cell size, but how the mitotic spindle adapts to changing cell dimensions is not understood. To identify mechanisms that scale the spindle during Xenopus laevis embryogenesis, we established an in vitro system using cytoplasmic extracts prepared from embryos that recapitulates in vivo spindle size d...

متن کامل

Mitotic chromosome size scaling in Xenopus.

As rapid divisions without growth generate progressively smaller cells within an embryo, mitotic chromosomes must also decrease in size to permit their proper segregation, but this scaling phenomenon is poorly understood. We demonstrated previously that nuclear and spindle size scale between egg extracts of the related frog species Xenopus tropicalis and Xenopus laevis, but show here that dimen...

متن کامل

Nuclear Size Scaling during Xenopus Early Development Contributes to Midblastula Transition Timing

Early Xenopus laevis embryogenesis is a robust system for investigating mechanisms of developmental timing. After a series of rapid cell divisions with concomitant reductions in cell size, the first major developmental transition is the midblastula transition (MBT), when zygotic transcription begins and cell cycles elongate. Whereas the maintenance of a constant nuclear-to-cytoplasmic (N/C) vol...

متن کامل

Changes in cytoplasmic volume are sufficient to drive spindle scaling.

The mitotic spindle must function in cell types that vary greatly in size, and its dimensions scale with the rapid, reductive cell divisions that accompany early stages of development. The mechanism responsible for this scaling is unclear, because uncoupling cell size from a developmental or cellular context has proven experimentally challenging. We combined microfluidic technology with Xenopus...

متن کامل

Integrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis

Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cold Spring Harbor perspectives in biology

دوره 7 10  شماره 

صفحات  -

تاریخ انتشار 2015